I-TRAIN #6: Advanced Self-Calibration Topics

A. M. S. Richards - UK ARC node E. Moravec - Czech ARC node A. Pérez-Sánchez - Allegro ARC node M.C. Toribio - Nordic ARC node

with thanks to Perley, Fomalont, Kloeckner and others; *Taylor et al. Synthesis Imaging 1999* and *Brogan et al. 2018*

Astronomical Institute of the Czech Academy of Sciences

Advanced Topics & Background Explanations

- 1. <u>Choosing a solution interval</u>
- 2. When not to self-calibrate
- 3. Other aspects of self-calibration
- 4. <u>How to choose a line</u>
- 5. How to recover poorly-calibrated data
- 6. <u>Sources of error</u>
- 7. Bright sources
- 8. <u>Methods for implementing self-cal</u>
- 9. <u>Why phase first?</u>
- 10. <u>Image accuracy</u>

Warning: Expressions are mostly oversimplification or approximations. See references at end for more detailed derivations.

(1a) How to Choose a Solution Interval (Solint): Theory

Choosing the solution interval - phase

Start cautiously, e.g. scan length, to avoid freezing-in imperfect model

- See previous talks
- Can compare S/N to optimise solint (also see VLA self-calibration CASA guide)
 - Maybe harder if sensitivity or signal changes a lot with frequency or baseline length
- Can estimate analytically integration time giving required S/N per antenna

•
$$S = \text{peak flux in Jy/beam, ideal } \sigma_{\text{rms}}$$
, N antennas
 $\sigma_{\text{rms}} \propto \frac{T_{\text{sys}}}{\sqrt{N(N-1)/2 \times \Delta \nu \times \Delta t}}$

- \circ Δv total bandwidth (used in image), Δt total time on target
 - Initial actual image $\sigma_{\rm rms}$ higher, atmospheric as well as thermal noise
 - Actual σ_{rms} should decrease as self-calibration progresses
- Each antenna has (*N*-1) baselines
 - Degrees of freedom also reduced by refant, arbitrary origin of phase

• Noise per antenna
$$\sigma_{\rm rms,ant} = \sigma_{\rm rms} \times \sqrt{\frac{(N(N-1)/2)}{(N-3)}}$$

Minimum solution interval for phase calibration

e.g. Require S/N \geq 3 per antenna, per polarization (X, Y), per spw*, per solint dt

- Noise in solint (all baselines) $\sigma_{
 m rms,} dt = \sigma_{
 m rms} \times \sqrt{\Delta t} / dt \times NP \times N {
 m spw}$
- Take *N*=20, two polarizations *NP*=2, total *Nspw*=2

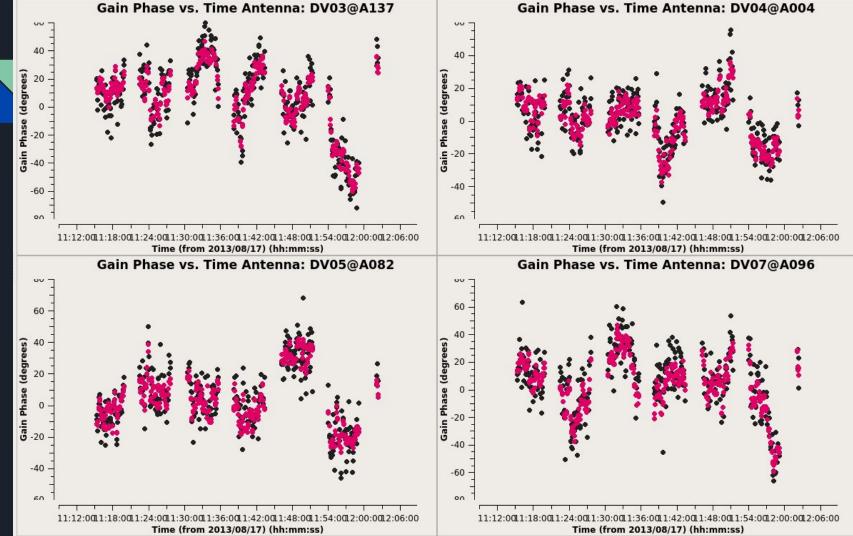
- Want S/N per antenna per solint $\sigma_{\text{rms,ant},dt} = \sigma_{\text{rms},dt} \times \sqrt{(N(N-1)/2)/(N-3)} = S/3$
- So $\sigma_{\rm rms} \times \sqrt{\Delta t/dt \times NP \times N} \text{spw} \times (N(N-1)/2)/(N-3) = S/3$
- Minimum solution interval, for peak *S*, without spw or polarization avg. $dt = \frac{(N(N-1)/2)/(N-3) \times NP \times N \operatorname{spw} \times \Delta t}{(S/3\sigma_{rms})^2}$
- If the full observation had more antennas, more spw, a longer time on source, thus lower σ_{ms}, then the minimum solution interval is longer for a given peak flux
 * For continuum, spw ~equal sensitivity; use appropriate

spectral widths for different spw or for line self-cal

What is signal peak? What is noise? Why $3\sigma_{rms}$?

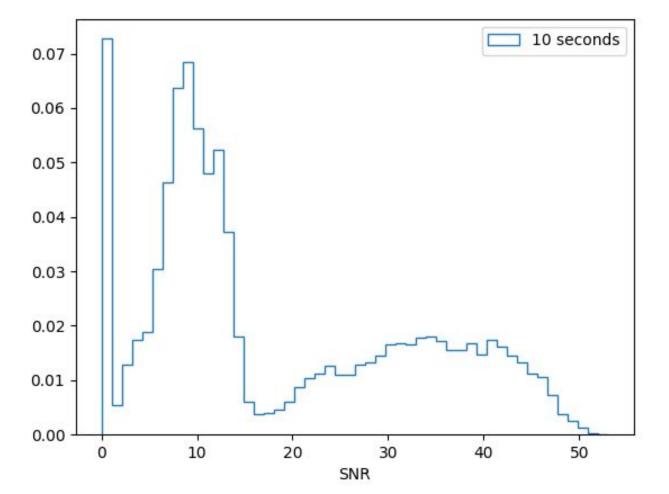
First image peak is probably lower and noise is higher than ideal

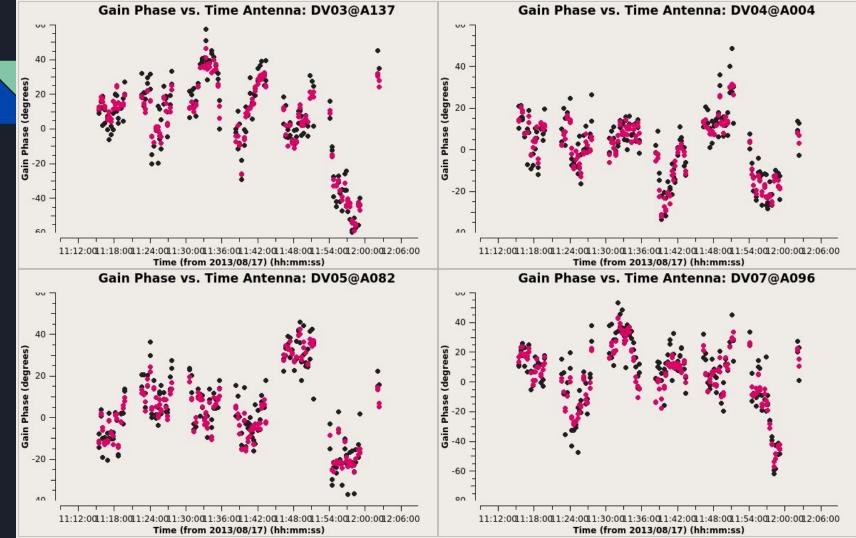
- Why use peak (not total) flux in estimating S/N? To ensure that long baselines are calibrated
- Don't calibrate weights until last self-cal cycle (usually)

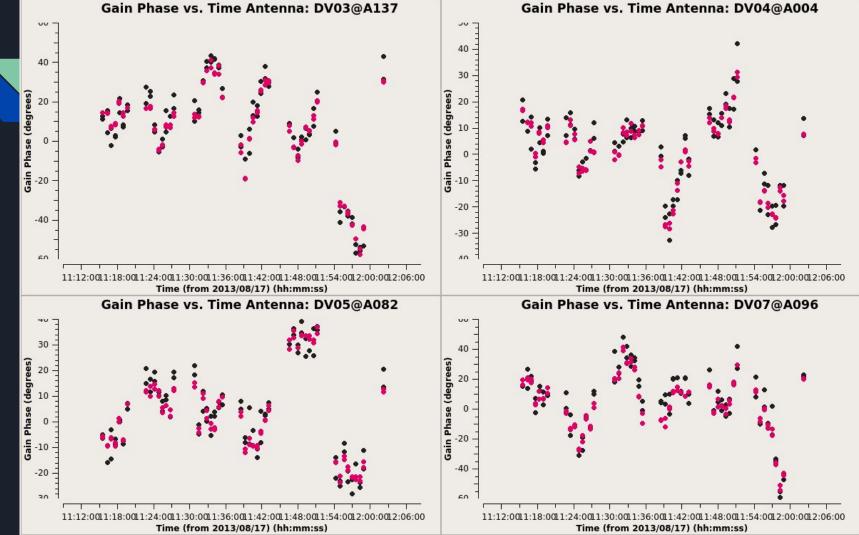

- Model needs to include contributions from antennas most in need of correction
- Exceptions e.g. mixed 7m-12m antennas, i.e. real difference in sensitivity
- Using initial image S/N gives longer *dt* (plus you should allow for imperfect model)
 - As S/N improves, minimum dt shrinks (can estimate optimum $\sigma_{\rm rms}$ from sensitivity calculator)
- In map, off-source, a few pixels per 1000 have values outside $3\sigma_{ms}$
 - NB map noise has non-linear relationship with visibility phase errors
 - Nonetheless, usually ensuring S/N $3\sigma_{rms}$ per antenna per solint produces good solutions
 - \circ Could start with < $3\sigma_{rms}$ to avoid failing solutions due to a poor model rather than bad data
 - \circ Or > $3\sigma_{\rm rms}$ if there are bad data, or for large data sets and potential high dynamic range

(1b) How to Choose a Solution Interval (Solint): Method S/N

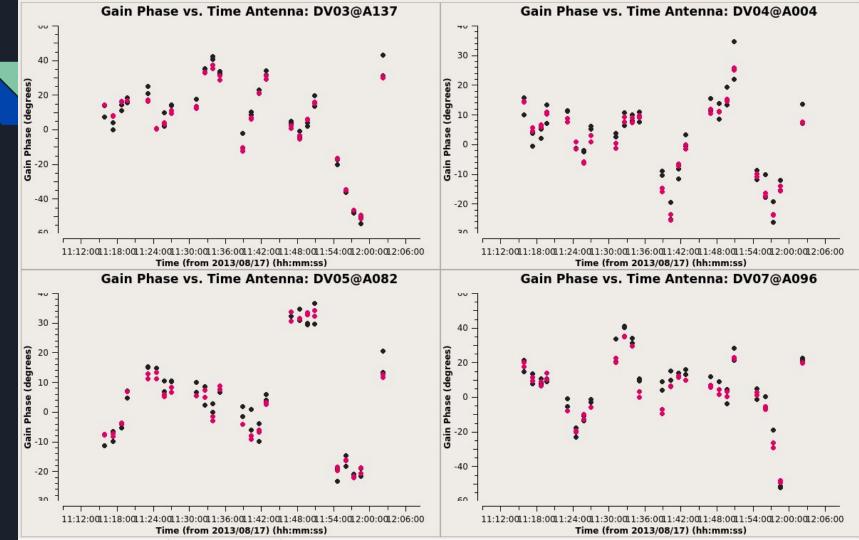
Goal: choose a solint that captures the variations and flags minimal solutions

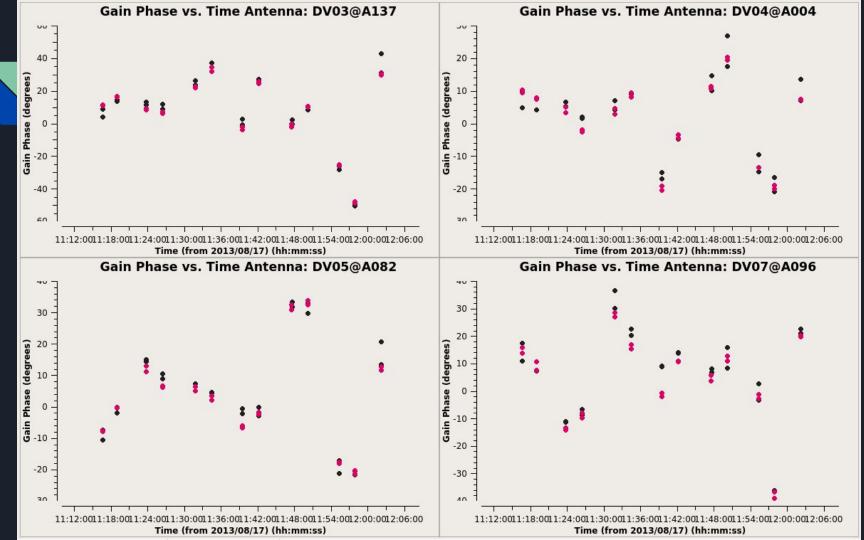

Look at multiples of int (1,2,3,4,5,etc.) (2,4,8,16,etc) -- int from listobs

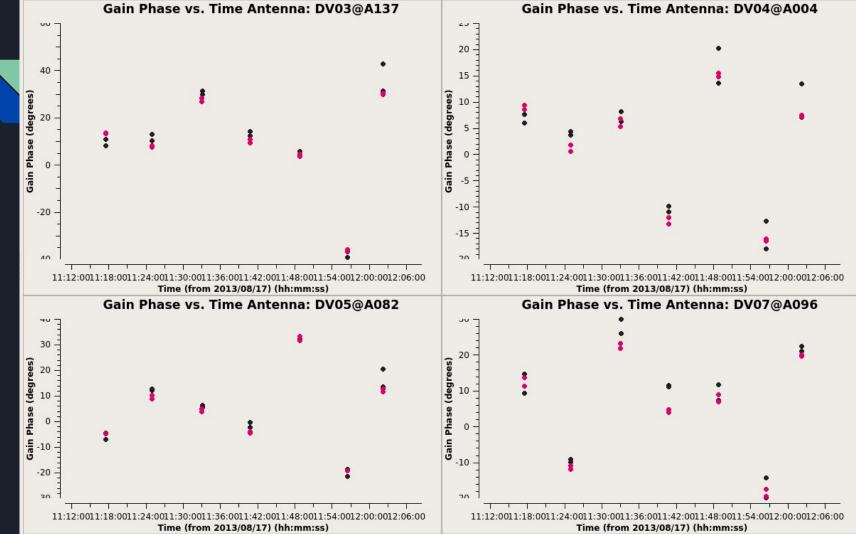

Multiples of inf (inf, inf/2, inf/4) -- scan length from listobs

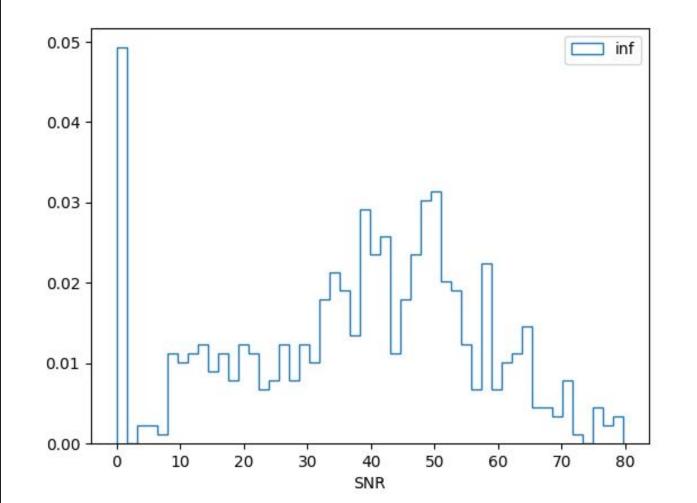

solint=int~10s

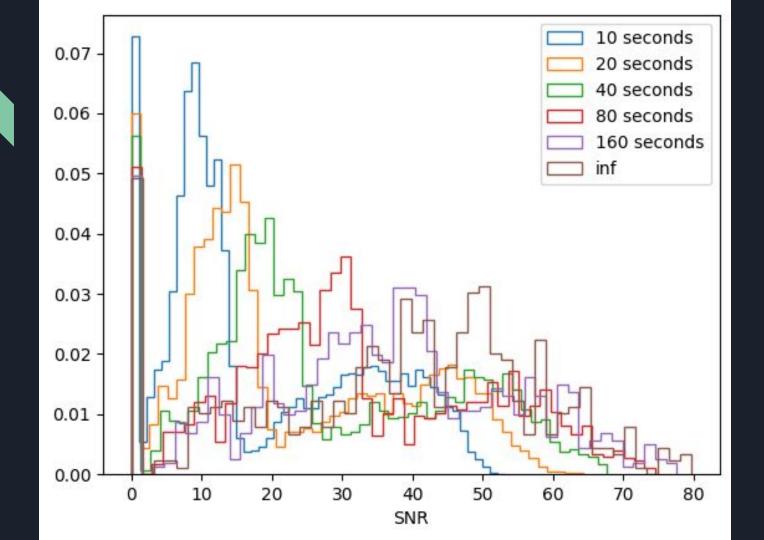
S/N of SOLUTIONs in GAINTABLES NOT the IMAGE

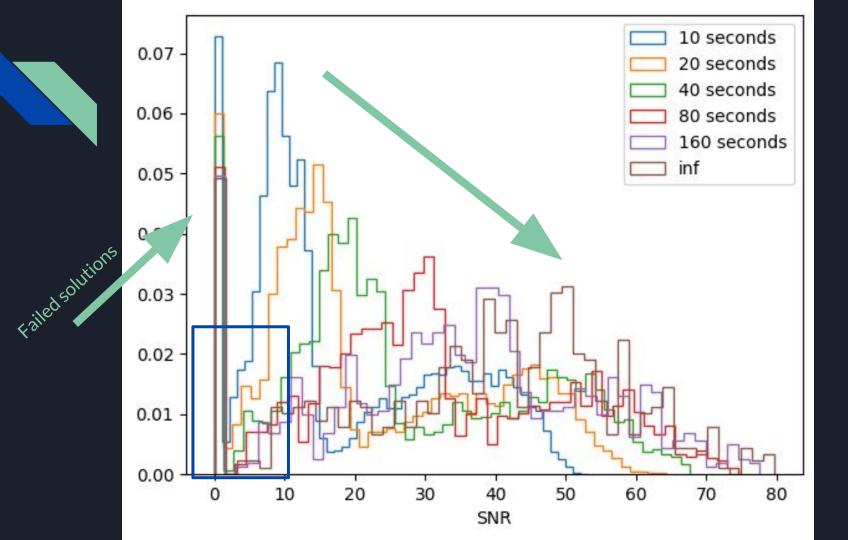


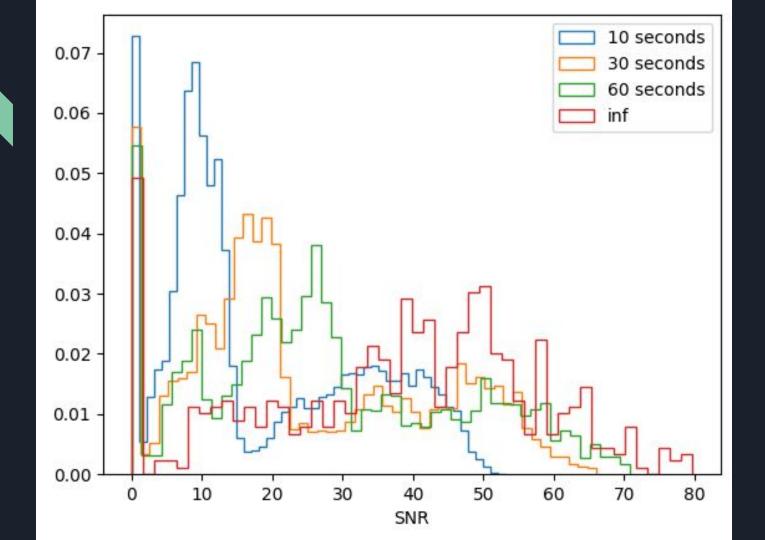

solint=20s

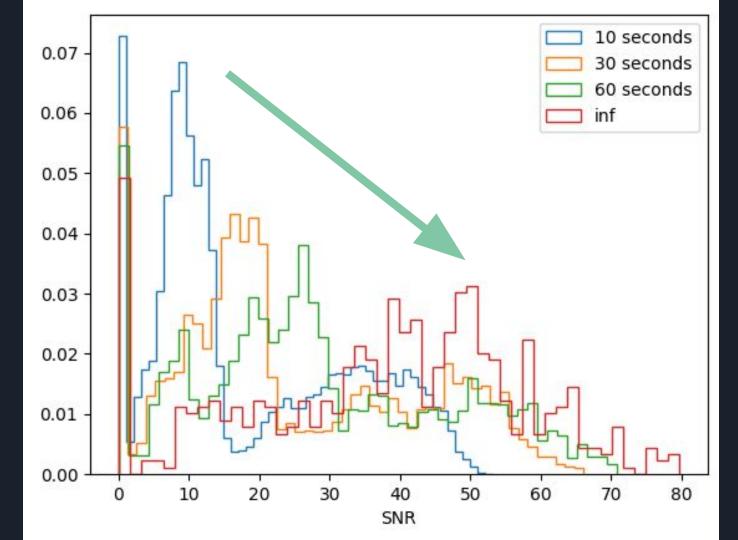

solint=40s

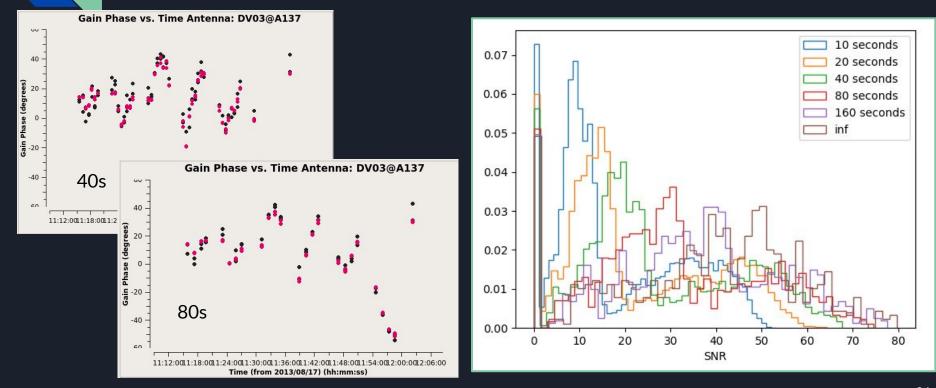

solint=80s



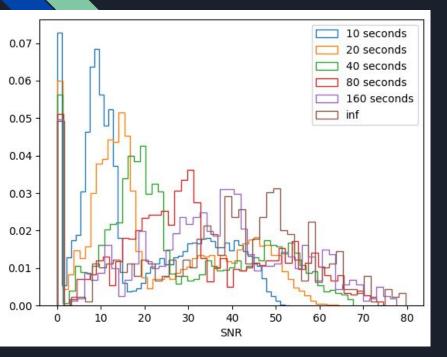

solint=160s




solint=inf~285s



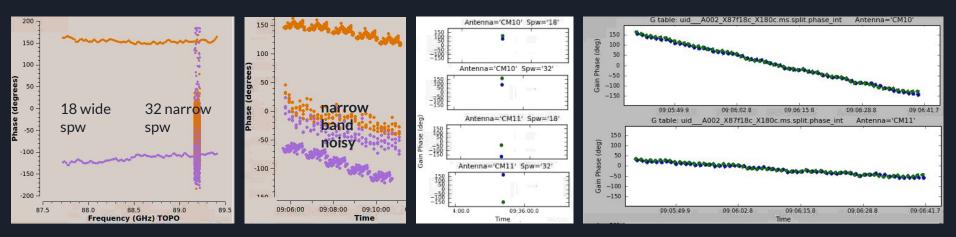
What you want in a solution interval


The shortest solution interval that balances (1) sampling the variations in the solutions, and (2) flagging the least amount of solutions.

Inspiration from: <u>https://casaguides.nrao.edu/index.php?title=VLA_Self-calibration_Tutorial-CASA5.7.0</u>²¹

Ways of applying solution intervals with rounds of self-calibration

 Find optimal solution interval using S/N plots (higher S/N and flagged minimal solutions) apply and look at histograms again to find optimal solution interval and apply again • Reduce solution intervals from inf (naturally improving model and increasing S/N) (inf, inf/2, inf/4, etc.) (conservative approach way to do left)



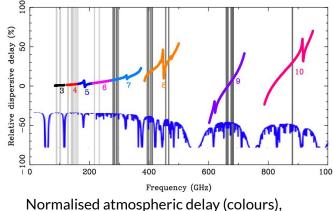
Increasing SNR in your gaintables

- Combine
 - Spectral Windows (e.g. 4 x equal spw doubles S/N)
 - If gain solutions are quite similar
 - gaincal(combine='spw') -> applycal(spwmap='[0,0,0...number of spw]')
 - Some spw normal-broad and others very narrow? Apply good solutions from broad windows to all spw (bandwidth switching)
 - **check if the spws have offsets (anything more than scatter in phase solutions ~10deg)
 - by plotting previous solutions and if so, will have to derive phase solution w bandpass calibrator with long solint (reach out to colleagues for help with this)
 - Polarizations
 - If gain solutions are quite similar
 - gaincal(gaintype='T')

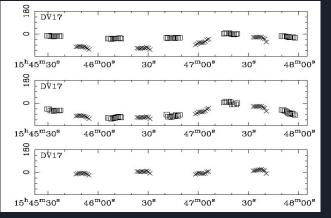
Combining spw/polarizations? Things to check:

- Some spw OK, others very narrow?
 - Apply good solutions to all spw (bandwidth switching, use spwmap)
 - Usually phase-referencing removes phase offsets between spw, correlations. Plot phase-time to check (b). If offsets >5-10 deg, use bright source to remove
 - \cap
 - Exaggerated example: \cap

(a) Bandpass calibrator Polarizations XX, YY Use as DiffGainCal (could, alternatively, use target itself)


(b) Target to self-calibrate. WVR. Tsys, BP solutions applied. spw, poln phases have similar slopes, ~constant time offset

(c) DGC: average all times, solve for phase One correction per poln, per spw


(d) Apply DGC solns to target, derive time-dependent phase solutions for wide spw 18, p1 Corrections have same slope for X, Y, average about 0 24 Applycal DGC solutions and p1 to spw 18 & 32

Transferring phase across large frequency intervals

- In ALMA bands, atmosphere mostly has refractive index ~1
 - Phase delays (cause of error) scale linearly with frequency
 - e.g. 45° correction at 220 GHz \Rightarrow 55° at 270 GHz
 - PhaseDelay suffix in CASA scales solutions by frequency
 - e.g.applycal interp='linearPD'
 - Usually negligible within one tuning,
 - Significant if frequency changes by ≥20%

absorption (blue), v. frequency

- Phase solutions: band 3 squares \Box , band 7 crosses x
- Scale band 3 phases to band 7 frequency
- Apply to band 7; residuals ~0

Additional 'phase up' needed for Band to Band, see Asaki et al. 2019

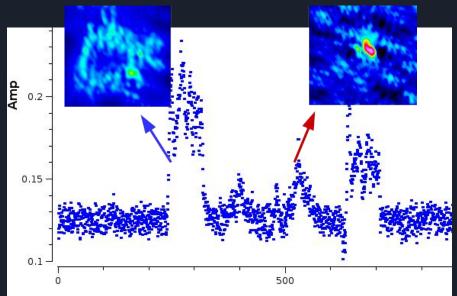
(2) What can't be cured by self-calibration? (ALMA examples) (data might *also* need self-cal)

- Targets with S/N too low or where thermal noise is already reached
 - \circ Although small phase errors can smear flux with negligible off-source noise might be worth a try
- Bad data (maybe identified from failed solutions)
 - Pure noise (phase incoherent on all scales), spikes, very low amplitudes flag it!
- 'Basket-weaving' /negative bowl too few intermediate spacings/missing short-spacing flux
 - Reduce weight of long baselines with uvtaper, consider multiscale (mtmfs)
 - May need additional more compact array or Total Power data
- Target variability spottiness around compact source gets worse with self-cal
 - Inspect uv amps v. time, possibly image in time chunks and/or uvsub variable core
- (unknown) Antenna position, pointing errors can be mitigated for compact, central sources
- Baseline-dependent errors (i.e. not antenna effects) need great care
 - o gaincal solves per-antenna; blcal solves per baseline need perfect model and high S/N
- Broad stripes shifting over planes of cube may be bandpass/delay errors
 - Can original bandpass/delay calibration be improved?
 - BP self-cal needs v. v. high S/N, smooth continuum, perfect model, spectral terms

Q: When do I stop doing rounds of self-cal? A: When things stop getting better (recap)

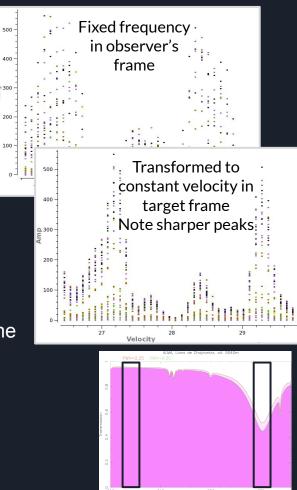
- Carry on while you estimate something can be improved: Phase
 - \circ If no/v. few solutions failed in the last gaincal, and the target phase still have errors (not just noise)
 - Try a shorter solint?
 - If you compare image with model and the mask you used and there is emission not in the model
 - Continue to improve model
 - Usually, want to get phase corrections as good as possible first
 - This reduces noise, improves image fidelity and may increase flux as correlation improves
 - Stop (or try something different) if S/N does not increase or target flux falls
 - Check improvements are realistic... beware forcing extended flux into a point
- For good S/N (here, ~100) try Amplitude self-cal applying phase solutions
 - Make an image+model including spectral index with deconvolver='mtmfs', nterms=2
 - Clean down close to the noise to make sure all the target flux is in the model
 - Examine visibility amplitudes usually errors change more slowly than phase
 - Usually start with longer solint than the final phase solint
 - If, after amp self-cal, image flux is lower, try solnorm=True
 - Do another round improving model? Or maybe data are not bright enough
 - Stop (or try something different) if S/N does not increase or target flux falls

(3) More aspects of self-calibration


- As with any imaging, include all significant sources in the field of view to prepare model for self-calibration
- Check visibilities, after applycal, for bad data appearing as S/N increases
- For mosaics use field with brightest peak, apply to all fields (gainfield parameter in gaincal/applycal)
- For (weak) **polarization**: ALMA observes in X and Y receiver polarizations:
 - \circ Make I (total intensity) model image
 - gaincal gaintype =' T' (average correlations), real X -- Y differences are preserved
- For extended objects can use multiscale clean to produce model
- Amp self-cal to make flux scale consistent (assume no time variability!)
 - Flux scale offsets between observations at different times, and between spw (e.g. atmospheric effects)
 - Use continuum, may need to allow for spectral index *a* (tclean deconvolver='mtmfs')
 - Flux density at freq v_1 is related to that at v_0 by $S_1 = S_0 (v_1/v_0)^{\alpha}$
 - e.g. $S_0 = 9 \text{ mJy}$, $v_0 = 86 \text{ GHz}$, $v_1 = 100 \text{ GHz}$, $\alpha = 2$, so $(S_0 S_1) = 3.2 \text{ mJy}$
 - If change in flux $(S_0 S_1)$ is more than $\sim 3\sigma_{\rm rms}$ in each spw:
 - O Use nterms=2 in making image model, ft *tt0 and *tt1 models

(4) Calibrate on line or continuum?

- Start with continuum if possible to make multiple observations consistent (point (3))
 - Is S/N of brightest line peak much higher than for continuum?
 - Or, is line but not continuum bright enough to self-cal?
- Might be possible to self-calibrate on line brightest channel(s)
- Even after self-calibration on continuum, S/N on a line might be higher
 - \circ Here, VY CMa best continuum S/N ~200
 - Potential maser peak S/N ~1000
 - After continuum self-cal, improve line S/N

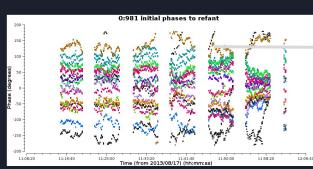

Tip: 'Triangular' lines more likely to have compact emission for self-cal

• Lower spectral peak but higher Jy/beam

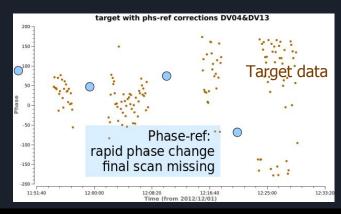
Spectral line for self-calibration

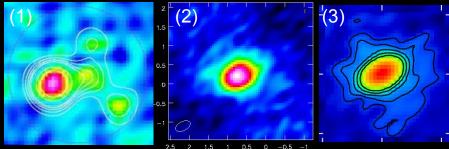
- Combining executions?
 - Earth rotation shifts channel-velocity correspondence
- For each EB, use mstransform to split spw's into V_{LSR} frame
 - Calculate start channels at same velocities for each spw for concat
- Select peak channel for imaging
 - If flat-topped maybe a few channels but check position same
 - Take care not to decrease averaged S/N by including weak channels
 - Insert model just for appropriate channel(s)
- Use gaincal just for selected channel(s)
- Apply corrections to all channels
 - Exceptionally, might confine to one sideband if drastic atmospheric differences

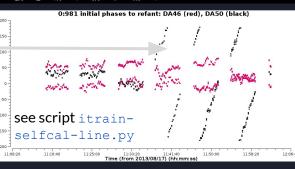
(5) Rescuing poor data


First image (1) with all target data has 'ears'!

- 3rd target scan is noisy
- 4th scan has no phase reference
- Make image, model from scans 1-2
- Use to self-calibrate all scans

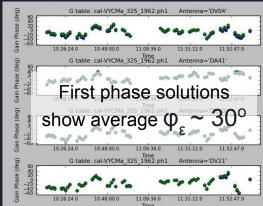

(1) All scans, no self-cal (2) Scans 1-2 first image(3) All scans after self-calibration


IRC+10216, Decin et al. 2015

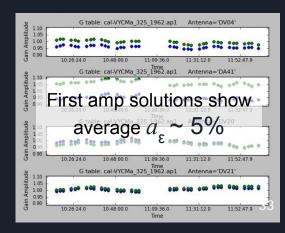

• VY CMa DA50 phase wraps

DA50: scan-average would decorrelate Exclude for self-cal until good model derived Then include, phase-self-cal with short solution interval

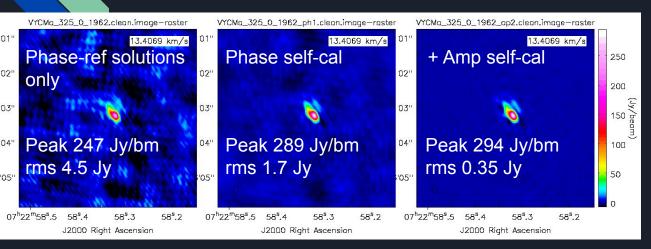
(6) Sources of error Target-phase ref separation in time and direction


Phase drift with time: example

- Raw calibrator phase change $d\varphi_{atm} \sim \pi \text{ per} \sim 20 \text{ min}$
- ~36° phase deviation in each phref-target cycle
- Separation on sky equivalent to time offset
 - Phase-ref: target separation $d\theta = 2^\circ = 120$ arcmin
 - 1° angular separation $\equiv 4 \text{ min time} (4^{\text{m}} \text{ RA})$
 - $(d\theta/360^\circ) \times \cos(\text{Dec.}) \times 24\text{hr} \sim 7.5 \text{ min} \text{ at Dec. } 20^\circ$
 - In 7.5 min, $d\varphi_{\text{atm}}$ gives $\pi \times 7.5/20 \sim 65^{\circ}$ phase change due to sky separation
 - Phase-ref corrections error ~ $(\sqrt{(65^2+36^2)})/2 \sim (75^\circ)/2$ when interpolated across target scans
 - Mitigated if many scans, baselines, with errors in different senses
- Jitter on scales shorter than a scan also remains
 - \circ ~10° in 30 sec
- Averaging phase fluctuations causes amp decorrelation
- Visibility $V = V_o e^{i\phi}$ so $\langle V \rangle = V_o \langle e^{i\phi} \rangle = V_o e^{-(\phi_{rms}^2)/2^{1/2}}$
 - Phase error ϕ_{μ} 10° produces 2% reduction in *V* isibility amplitude



(7) Bright Sources: Dynamic Range


- Dynamic range DB(φ_{ϵ}) due to phase errors φ_{ϵ} (rad) on all baselines, per scan for *N* antennas ~ *N* / φ_{ϵ}
 - M periods when φ_{ϵ} independent as atmosphere blows over • $DB(\phi_{\epsilon}) = \sqrt{M/2} \times N/\phi_{\epsilon}$
- Similarly for fractional amplitude errors A_{ϵ} $\square DB(A_{\epsilon}) = \sqrt{M/2} \times N/A_{\epsilon}$
- 2 hr obs, 2.7 km b'lines/5 km/h wind~30 min so M=4
 - e.g. φ_{ϵ} = radians(30°)~0.5, N = 20 gives **DB(\varphi_{\epsilon})~54**
 - $a_{\rm g} = 0.05 \text{ so } \mathbf{DB}(A_{\rm g}) \sim 280$
- Even if no errors transferring corrections to target, limited by phase-ref dynamic range (see Synthesis Imaging ch 13)

VY CMa brightest 325 GHz maser channel

VY CMa maser self-calibration - compact peak

$$V = Ae^{i\phi} = A(isin(\phi) + cos(\phi))$$

Phase errors are sin (odd), asymmetric +ive/-ive in image

Amp errors are cos (even) symmetric function in image

- Dynamic range DB before self-cal 55 (DB 54 predicted from φ_{c} 30°)
- After 1st phase self-cal DB 170
- After phase and amp self-cal DB 840
- Phase-ref J0648-3044 0.44 Jy, rms in line-free parts of 325 GHz spw 4 mJy
 - \circ Best dynamic range possible without self-cal 440/4 = 110

(8) Methods of Implementing Self-cal

1. Incremental build-up of corrections

more flexible, less increase in data volume

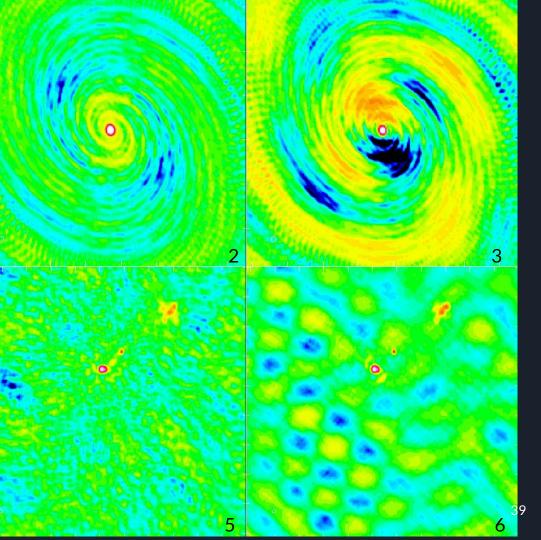
- a. Make model, derive calibration table p1, apply
 - i. Applycal always uses the data column and (over)writes the corrected column
- b. Image again (*corrected* column), calibrate again (p2) applying table p1 in gaincal, applycal with p1+p2
- c. Continue adding tables until no more improvement, then apply all tables and split out calibrated data
 - i. You can discard a model or a gain table, for example if the final amplitude cal makes a better model, throw away the last phase table and the amp table and redo those steps
 - ii. Always, whatever table(s) you apply as gaintable in gaincal, apply those plus the new table in applycal
- 2. Split corrected column from MS after each correction can be simpler but multiplies data volume
 - a. Make model, derive calibration table p1, apply, split out *corrected* column
 - i. So in new MS, previous corrections are in *data* column
 - b. Image split data, derive calibration table p2, apply just new table p2 to new MS, split that
 - c. Continue until no more improvement and final split of calibrated data

(9) Why phase first, then amplitude?

- If there are phase errors, the amplitude will decorrelate
- Phase fluctuations due to atmospheric refraction change faster than amplitude drifts due to absorption/emission
 - e.g. ALMA measures PWV every few sec, T_{sys} every few minutes
- Amplitude solutions require higher S/N per antenna longer solint
- Analogous to closure relations (not actually method used in gaincal):
 - Visibility for baseline between antennas 1 and 2: $V12 = Ae^{i\varphi 12}$
 - Add visibility phases for 3 baselines and phase errors cancel out phase closure $[(\phi_{12} + (\phi_{\epsilon_1} - \phi_{\epsilon_2})] + [(\phi_{23} + (\phi_{\epsilon_2} - \phi_{\epsilon_3})] + [(\phi_{31} + (\phi_{\epsilon_3} - \phi_{\epsilon_1})] = \phi_{12} + \phi_{23} + \phi_{31}$
 - Amplitude closure needs 4 antennas, i.e. more baselines contribute to each solution $\frac{[A12A_{\epsilon 1}A_{\epsilon 2}] \times [A23A_{\epsilon 3}A_{\epsilon 3}]}{[A34A_{\epsilon 3}A_{\epsilon 4}] \times [A41A_{\epsilon 4}A_{\epsilon 1}]} = \frac{A1A2 \times A2A3}{A3A4 \times A4A1}$
 - Very occasionally, an antenna is totally mis-scaled in amplitude need to fix it early on

(10) Final image accuracy

• Astrometry - factors influencing accuracy


- Antenna positions
- Phase reference position accuracy
- Phase correction accuracy: phase rate, offsets in time and angular separation
- Target S/N
- Resolution
- First image after applying phase reference solution gives target position
 - Using first image as model keeps astrometrically accurate position
 - But self-cal cannot *improve* absolute position even if target S/N improves
- Flux scale (photometry)
 - Mostly determined by flux standard accuracy and determination of phase reference flux
 - Can be over-estimated (fluxscale biased to higher values in noisy data)
 - Target flux may be reduced by phase decorrelation or not all flux in amplitude model
 - More rarely, overcleaning a compact model may pile in too much flux

My image is still awful! Noisy/no source/....

- Check weblogs/QA log, previous calibration is phase ref OK?
- Check all non-default settings in tclean are appropriate
- Check how much data you have in plotms (so flagged data don't appear)
 - \circ ~ Use sensitivity calculator to predict rms get PWV from weblog/QA logs
- You've checked for bad data
 - If you tried self-calibration, were the solutions coherent? Applied correctly? Right model?
- Does more channel averaging or tapering the beam improve S/N?
- Is there more emission in the field of view? (especially nearby galaxies, Galactic SFR)
 - Make larger image, inspect uvdistance plot
 - Do you need more compact array/total power data to fill in missing spacings?
 - Already combined? Are positions and flux scale correctly aligned?
- Wide bandwidth continuum? Solve for spectral index (see More Aspects slide)
- Extended emission? deconvolver= `mtmfs' or `multiscale'

Can you identify possible causes and which errors² might be solved by self-calibration?

Rogue's Gallery

Bad data on long baseline (or bright but distant confusion, if lines curve) ₁

Undercleaning? Missing short spacings? Amp error - maybe cure by self-calibration

Confusion (or bad data on short baseline, if lines straight) Phase error - maybe cure by self-calibration

2

5

Basket-weaving? Delay errors? - improve delay /bandpass pre-calibration Too low 'robust' value?

Resources/More information

VLA Self-cal Tutorial (https://casaguides.nrao.edu/index.php?title=VLA_Self-calibration_Tutorial-CASA5.7.0) ALMA Self-cal Tutorial (https://casaguides.nrao.edu/index.php?title=First Look at Self Calibration) Advanced Gain Calibration Techniques (Brogan et al. 2018): https://arxiv.org/abs/1805.05266 INAF (http://www.alma.inaf.it/images/Selfcalibration.pdf) NAASC (https://science.nrao.edu/facilities/alma/naasc-workshops/nrao-cd-wm16/Selfcal Madison.pdf) ALLEGRO (https://www.alma-allegro.nl/wp-content/uploads/2018/10/Allegro CASAtrainingDay2018 selfcalupdate.pdf) ERIS (https://www.chalmers.se/en/researchinfrastructure/oso/events/ERIS2019) DARA (http://www.jb.man.ac.uk/DARA/) Synthesis Imaging Taylor, Carilli & Perley (http://www.phys.unm.edu/~gbtaylor/astr423/s98book.pdf)

ALMA technical handbook for current cycle

ALMA memos

Additional slides

Advanced script that shows how self-calibrate using a line and how to recover antenna DA50

In this tutorial we provide an example script on how to perform self-calibration of a dataset using a strong maser line (instead of using the continuum):

itrain-selfcal-line.py

In this case the antenna DA50 is not flagged in the Measurement Set. Given its suspicious behaviour, the antenna is excluded of the first cycles of self-calibration. In particular, the antenna is excluded at the time of generating new models with tclean by specifying antenna='!DA50'.

Given its behaviour, we exclude antenna DA50 until a good model is derived and then we include it for a phase self-calibration step with a short solution interval.