ALMA Observing Tool Quickstart Guide
User Support:

For further information or to comment on this document, please contact your regional Helpdesk through the ALMA User Portal at www.almascience.org. Helpdesk tickets will be directed to the appropriate ALMA Regional Center at ESO, NAOJ or NRAO.

Revision History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (IT3)</td>
<td>15.03.2011</td>
<td>S. Randall, D. Espada</td>
</tr>
<tr>
<td>1 (OT release Cycle 0)</td>
<td>30.03.2011</td>
<td>S. Randall, D. Espada, E. Humphreys</td>
</tr>
<tr>
<td>1 (OT release Cycle 1)</td>
<td>31.05.2012</td>
<td>E. Hatziminaoglou, S. Randall</td>
</tr>
<tr>
<td>1 (OT release Cycle 2)</td>
<td>07.10.2013</td>
<td>S. Randall</td>
</tr>
<tr>
<td>1 (OT release Cycle 3)</td>
<td>12.03.2015</td>
<td>S. Randall</td>
</tr>
<tr>
<td>1 (OT release Cycle 4)</td>
<td>17.03.2016</td>
<td>S. Randall</td>
</tr>
<tr>
<td>1 (OT release Cycle 5)</td>
<td>15.03.2017</td>
<td>S. Randall</td>
</tr>
</tbody>
</table>

Contributors

The ALMA OT Team, and the many Testers.

In publications, please refer to this document as:

S. Randall 2017: ALMA Observing Tool Quickstart Guide, ALMA Doc. 5.10 v1.0
This page was intentionally left almost blank
1 Scope

This document is intended as a Quickstart guide to Phase 1 proposal preparation in Cycle 5 for novice and experienced ALMA users alike. While novice users should carefully follow the step-by-step instructions, experienced users may want to concentrate on the boxed texts. These highlight new features, useful tips and tricks, and issues to be aware of, and can be identified by the corresponding icons.

A more comprehensive description of the OT and the different aspects of proposal preparation can be found in the ALMA OT User Manual. The ALMA OT Reference Manual provides a more concise explanation for all the fields and menu items in the OT, and can be accessed interactively from within the OT by clicking on the icons. The User Manual and Reference Manual can also be accessed and interactively searched via the Help menu in the OT. The OT also contains helpful tooltips that appear when you mouse-over text boxes or radio buttons. For a visual demonstration of different aspects of the OT you are invited to consult the suite of ALMA OT video tutorials.

2 Getting Started

In order to access the ALMA Archive and submit an observing proposal, you must have previously registered with the ALMA Science Portal. You can then download the OT from the OT page in the ALMA Science Portal. Please follow the detailed installation instructions there; in case of any problems you can consult the Troubleshooting page. You start the OT either by clicking on the ALMA OT icon (Web Start) or from the command line by typing ./ALMA-OT.sh in the installation directory (tarball). A splash screen with different options will appear. To follow the step-by-step guide for creating a new Cycle 5 proposal submission, please select the first option 'Create a new proposal'.

If you would like to re-use a proposal from a previous cycle as a template for your Cycle 5 proposal, try the File > Open Project as New Proposal feature. Regardless of its Phase 2 status, the old proposal will be retrieved from the ALMA archive and open in the OT as a new Phase 1 proposal without a project code. You can edit the proposal as desired and then follow the normal procedure for submission, whereupon the proposal will be assigned a Cycle 5 project code. Note that time estimates, allowed configurations etc. will have changed from previous cycles, therefore you should check the technical setup carefully. Some edits may be required for the proposal to validate.

Alternatively, once the OT has opened you can select the green New Proposal (Phase 1) button from the toolbar in the OT. You will be presented with the window shown in Fig. 1, which illustrates the main Graphical User Interface (GUI) components:

Menu: Allows access to all functions available in the OT via pop-up submenus.

Toolbar: A selection of icons for some of the most frequently used functions in the Menu.

Project Structure Pane: Visualisation and navigation of the Project tree. You can expand and collapse parts of the tree by clicking the node icon to the left of each component

Editor Pane: The technical specifications of the project are filled and edited in this pane. The content of the editor pane changes depending on the branch of the Project tree selected. For the spatial and spectral setup the editor panes are composed of several tabs.

Feedback Pane: Provides feedback on the validation process and allows you to identify problems with your proposal.

1 Choosing 'Create a new DDT proposal' will present you with the Cycle 4 version of the OT until the end of Cycle 4. This option must not be used to submit Cycle 5 proposals.
Overview Pane: Informative summary of the proposal creation process and contextual help.

You can customize the GUI according to your needs. The size of the different panes can be modified by clicking and dragging their borders, or maximised/minimised by clicking on the triangular arrow symbols. You can toggle the Overview and Feedback panes by clicking on View > Feedback/Overview in the Menu, e.g., in order to maximise the Editor pane. The Feedback pane will normally not be visible upon starting the OT, but it will pop up when the project is validated (see Section 11). You can customise the OT further by selecting File > Preferences. In particular, you may want to change the font size or colour scheme, or preferentially show certain editors.

3 General Proposal Information

Start by filling the fields in the Proposal editor pane labelled Proposal Title and Abstract, select the Proposal Type and Scientific Category using the radio buttons and choose up to two Keywords from a list (to select multiple keywords hold the Ctrl button, or the Cmd button on Macs). You can optionally provide additional information on Related proposals (submitted in Cycle 5) or Previous proposals (related ALMA proposals from previous cycles) in the format specified by the tooltip.
Special Proposal Types

Target of Opportunity (ToO) proposals are designed for observations that can be anticipated, but for which the source coordinates and the timing are not known at proposal submission time. These proposals must be triggered during Cycle 5 for observations to be carried out. Examples of typical ToO targets are supernovae, gamma ray bursts or transients. A proposal that simply has time constraints is not a ToO but should instead be submitted as a Regular proposal, with the requested time constraints specified in the **Control And Performance** editor (see Section 9).

VLBI proposals use ALMA in conjunction with the VLBI network. They have a special VLBI proposal interface at the Science Goal level and the spectral setup is limited to pre-defined Band 3 and Band 6 continuum setups. Users should normally select the system-defined calibration option as all necessary calibrations will be carried out by the observatory. Unlike standard proposals, VLBI observations require a time estimate (including overheads, which make up ~ 50% of the expected time on source) rather than a sensitivity to be entered. Note that ALMA VLBI programs must also have been submitted to the appropriate VLBI network by their independent deadline.

Large Programs are proposals that require more than 50 hours of 12-m Array time, or more than 150 hours of stand-alone Atacama Compact Array (ACA, also known as the Morita Array) time. For these programs, co-PIs may be specified and the observing time required will be split between the PI and co-PIs’ Executives (Europe, North America or East Asia).

In order for you to be able to submit the proposal, you will have to **select yourself as PI** by scrolling down, pressing the **Select PI** button and searching by name, e-mail or ALMA ID in the pop-up window (see Fig. 2). The ALMA ID is your Science Portal login.

You can select an unlimited number of Co-Is in a similar way, **provided that they have previously registered with the ALMA Science Portal**. Please make sure they do so at least 24 hours prior to the submission deadline. If you have a long list of Co-Is you may prefer to add them from a proposal previously saved on disk using the **Add from proposal** button.
Unlike in Cycle 4, you are not required to indicate if your proposal constitutes a re-submission. This will instead be determined by the observatory (see section 5.4.2 of the Proposer’s Guide for details). However, you are now asked to justify any duplicate observations of archival data or previously accepted programs.

The Science Case used for the scientific assessment of your proposal needs to be attached as a PDF file not exceeding 4 pages in total (6 pages for Large Programs), including any figures and tables. The science case should put the proposed observations in a broad scientific context, highlight their impact on the field of research and present the immediate goal you expect to achieve. While the text of the technical justification is entered directly into the OT (see Section 10), any associated figures must still be included in this .pdf file. For more details please see the General Guidelines for writing a proposal section of the Proposer’s Guide.

4 Science Goals

The OT contains an in-built template library featuring examples for different Science Goals. It can be accessed via File -> Show Template Library. You can copy-paste (see below) any of these example Science Goals into your proposal and use them as a template for your observations.

Right-clicking on the Science Goal node in the Project Tree will allow you to select a number of actions to be performed, such as renaming, copying or deleting the Science Goal. Some of the actions (e.g. copying) are also available for nodes within a Science Goal, e.g. the Spectral Setup. It is important to understand that Science Goals can only be pasted at the Proposal or Planned Observing node level, and parts of a Science Goal can only be pasted at the Science Goal node level (i.e. a higher-level node must be selected and right-clicked after copying in order to bring up the Paste action). You cannot e.g. paste a Science Goal into another Science Goal. Copy-paste of a Science Goal or parts of a Science Goal can also be achieved with the usual Ctrl-C / Ctrl-V keyboard shortcuts, or by dragging and dropping.

All the technical specifications for your project are contained in one or more Science Goals. Each Science Goal may contain one or more sources of the same target type (individual pointing(s) or 1 rectangular mosaic), and is limited to one correlator setup with up to five frequency tunings, one calibration strategy, and one set of Control and Performance parameters (see Section 9). You create a new Science Goal by clicking on the New Phase 1 Science Goal icon in the toolbar or selecting Edit > New Phase 1 Science Goal from the Menu. A template library containing a range of pre-defined science goals can be brought up with the Show ALMA Template Library option available either from the File or the View menu items.

Within a Science Goal, the OT uses a clustering algorithm to group sources within 10° into separate SBs to allow a good phase calibration of all sources. Information on the different source clusters can be found in the Time Estimate pop-up available from the Control and Performance node. A source cluster can contain a maximum of 150 pointings.

5 Source Information

A source can contain either one or more (overlapping) individual pointings or 1 rectangular mosaic. All pointings defined in a given source share the velocity information and Expected Source Properties. Setting up the actual
pointings within a source is covered in Section 7. For the moment, it is sufficient to enter the source information, especially the velocity, as this will be used for the spectral setup.

By default, the Field Setup editor pane contains one source tab. The first thing to select is the **Target Type**: *Individual Pointing(s)* or *1 Rectangular field*. The target type must be the same for all sources in a Science Goal, and it is not possible to switch to *1 Rectangular field* once additional sources have been added. You can then use the *Add source* button at the very bottom of the pane to open additional source tabs. **You will need to specify the source information for each source individually.** If your source has an entry in SIMBAD or NED, you can simply type its name in the *Source Name* field and hit *Resolve* to import the field centre coordinate and velocity information from there (see Fig. 3). Otherwise, this information must be entered by hand. Solar System targets, including the Sun, can be selected from a pull-down list if the *Choose a Solar System Object* box is checked.

For each source, you are required to provide an estimate of the expected source properties. The peak flux density entered should be an estimate of the **weakest component** driving the sensitivity requirement of your Science Goal. For continuum observations only the *Peak Continuum Flux Density per Beam* is required, while for spectral line and spectral scan observations the *Peak Line Flux Density per Beam* and the (FWHM) *Line Width* must be specified. In the latter case it may also be appropriate to enter the *Peak Continuum Flux Density per Beam* if you want to observe both lines and continuum. The *Line/Continuum Polarisation Percentage* is required only if full polarization observations are requested. The expected source parameters entered are used to calculate a number of quantities in the Technical Justification editor (see Section 10) and the proposal/science goal summary sheets. They should be used for guidance when choosing the correlator setup and sensitivity requirements for your Science Goal.
It is your responsibility to **ensure that the source information is correct**. The source coordinates and the velocity are used by the OT to calculate the pointing(s) and the sky frequencies respectively, and can normally not be changed after a proposal has been accepted. The expected source properties are used for the technical feasibility assessment of your proposal, and incorrect or incomplete information may lead to the rejection of your proposal on technical grounds. For more information on how to convert existing flux measurements for your source to the peak flux density per synthesised beam required by the OT please see [this](#) and [this](#) Knowledgebase article, or consult video number 2 available [here](#).

If you have a large number of sources, you may prefer to read in the complete source information from an ASCII file using the *Load from File...* button at the bottom of the Field Setup editor. As with adding sources manually you should make sure that the correct Target Type is set **before** you load the source list. For the required file format, please see the *Field Setup* section of the ALMA OT Reference Manual.

Solar observations

Selecting 'Sun' as a source from the Solar System Object drop-down list to invokes the special Solar observing Science Goal interface. This will allow you to fill in all the specific details necessary for a Solar observing proposal. You should specify the Solar Activity Level and provide a dummy ephemeris file such as the one available from the OT Template Library or created using the ALMA Solar Ephemeris Generator Tool available at http://celestialscenes.com/alma/coords/CoordTool.html. The ephemeris will be updated in coordination with the observatory before any observations take place. You will be restricted to the Band 3 and 6 continuum setups offered for Solar observations, and asked to specify the total requested 12-m Array time (including overheads, which amount to ~ 25 minutes per maximum 2 hour execution) rather than a sensitivity. Note that the accompanying ACA 7-m and Total Power observations will always be added automatically, and that the Total Power observations will provide a map of the entire Solar disk.

6 The Spectral Setup

The spectral viewer

The spectral viewer is shown by default in the *Spectral Setup* editor. It shows the ALMA Bands offered for Cycle 5 (Bands 3, 4, 5, 6, 7, 8, 9 and 10), as well as the atmospheric transmission curve of the Chajnantor site. The OT automatically chooses the water vapour column density appropriate for the observing frequency, and bases the sensitivity calculation on this *Automatic Choice*. **The Manual Choice is for visualisation purposes only.** Once you specify at least one spectral window, the Local Oscillator (LO1) frequency is calculated, and (yellow) sidebands appear in the spectral viewer. The sidebands straddle the LO1 frequency and show the frequency ranges where basebands may be placed. They do **not** indicate the frequency range that will be sampled by the observations. ALMA uses 4 basebands (not displayed in the spectral viewer) with a bandwidth of 2 GHz, within each of which one or more spectral windows may be placed. Spectral windows are defined directly by the user from within the spectral line table and are represented in the spectral viewer by dark blue lines. The vertical dark blue line corresponds to the central frequency of a given spectral window, while the horizontal line represents the frequency range covered. **The LO1 frequency, sidebands and basebands are automatically calculated by the OT based on the spectral windows defined and cannot be controlled by the user directly.** If the OT cannot compute a valid spectral setup for your spectral windows, the sidebands will turn grey and a red error message will appear. In that case, you will have to modify your spectral setup, if necessary by placing "offending" spectral windows into separate Science Goals.
You can zoom in/out of the spectral viewer by left/right-clicking on the magnifying glass symbol cursor, or by using the **Zoom to Band** and **Reset** buttons. You can move along the frequency axis by moving the cursor near the axis and dragging the green sliding bars, or using **Pan to Line**. For a practical demonstration of the spectral editor please watch the spectral setup video tutorial.

ALMA Band 5 will be offered for the first time in Cycle 5. For a low-frequency ALMA band, Band 5 has the peculiarity that the atmospheric transparency varies dramatically over the band’s frequency range. In particular, observations around the atmospheric water line at 183.3 GHz require the best possible atmospheric conditions due to the very low transmission in this frequency range. Therefore, the OT will assume very different octiles of precipitable water vapour (PWV) across Band 5. Whenever possible, the OT will also avoid placing an unused sideband in the water line, instead placing it below the lower limit of Band 5 if necessary. Since all time estimates and PWV octile assumptions are based on the representative frequency (see Section 6.4), you should choose the latter particularly carefully for Band 5 observations. **Note** that Band 5 will be available only from March 2018 onwards and that consequently not all Cycle 5 array configurations will be offered.

In the **Spectral Setup** editor, start by selecting the **Spectral Type** and the **Polarisation Products Desired**, as these will influence the choices you have for defining your spectral setup. In particular, selecting **Full** polarisation will limit you to measurements in Bands 3, 4, 5, 6 and 7, and single pointings of well-centred targets filling no more than 1/3 of the 12-m Array primary beam. If you are not interested in polarisation information, you should generally leave the radio button set to the default **Dual. XX** polarisation is appropriate only if you need extremely fine spectral resolution (< 30 kHz).
For Cycle 5, **90-degree Walsh switching** is newly enabled for ALMA Bands 9 and 10. This allows the user to access the information not only from the spectral windows specified, but also from the resulting "mirror" (or "image") spectral windows, the information from which was simply being suppressed in previous cycles. Note that **only the actual spectral windows can actively be defined in the spectral line table**, and that the "mirror" spectral windows will automatically shift anytime LO1 is recomputed (e.g. if additional spectral windows are added, or the bandwidth is changed). For the **Single Continuum** (see Fig. 4) and **Spectral Scan** spectral types with 1875 MHz-wide spectral windows Walsh switching is automatically enabled by the OT; the user has no choice in the matter. For **Spectral Line** observations Walsh switching is not turned on by default, but you can choose to activate it by ticking the **Produce image sidebands** option in the **Spectral Type** section. If you select this option, the "mirror" spectral windows will be marked by continuous rather than dashed lines in the spectral viewer, and you will be given the option to view the characteristics of the "mirror" spectral windows with the **Show image spectral windows** tick-box (see Fig. 7). Walsh switching is **available only when all spectral windows in the setup use the widest (1875 MHz bandwidth) correlator mode**. Note that storing (and delivery to the PI) of the "mirror" spectral window data can be switched on or off for each spectral window individually using the **Store Image** tickbox.

6.1 Spectral Line

Selecting **Spectral Line** will present you with a spectral window table for each of four available basebands. Unless your Science Goal requires more than 4 spectral windows (see "Multi-region mode" boxed text below), **you will normally define one spectral window per baseband**. It is good practice to fill any basebands not needed for spectral line observations with continuum spectral windows, as this facilitates calibration, especially in the case of narrow spectral windows.

For ALMA Bands 3, 4, 5, 6, 7 and 8 it is not possible to place three basebands in one sideband, and one in the other for technical reasons. This restriction does not apply to Bands 9 and 10.

You define spectral windows individually for each baseband using either the **Add Spectral Window Centred on a Spectral Line** or the **Add Spectral Window Manually** buttons. The first option brings up the **Spectral Line Selector tool** (see Fig. 5), which allows you to search an extensive database\(^2\) for popular transitions based on species, ALMA Band, Sky frequency, maximum upper-state energy or molecules detected in a variety of astronomical sources. Simply select the transition you want, press **Add to Selected Transitions**, and a spectral window with a central frequency corresponding to the transition will be created. The second option **Add Spectral Window Manually** allows you to manually enter a spectral window central frequency. Conversion between rest and sky frequencies is automatically performed based on the source velocities defined in Section 5.

If you cannot find the transition you want in the Spectral Line Selector tool, try the **Find More...** button: you will then be able to search online from a more extensive database. By default, the Spectral Line Selector shows only transitions that are simultaneously observable with any other transitions already defined in the spectral setup; un-tick the **Hide unobservable lines** option to display all transitions corresponding to the search criteria.

\(^2\)The Splatalogue, for detailed information see http://www.splatalogue.net
Figure 5: The spectral line selector tool.

Figure 6: Visualisation of spectral line observations in the spectral editor pane.
Figure 7: Spectral line observations with Walsh switching turned on, and the mirror image saved for one of the spectral windows.

Spectral windows must be associated with a correlator mode, which can be selected independently for each baseband. Double-click on the red text in the Bandwidth, Resolution column to bring up the list of available options. The bottom entry in bold text corresponds to the lowest spectral resolution (continuum) mode. Please make sure that the bandwidth and resolution selected for each spectral window are appropriate for the expected spectral properties of your source(s) as entered in Section 5.

The spectral averaging factor is now by default set to 2 in order to lower data rates. Note that an averaging factor of 2 degrades the spectral resolution only marginally (by $\sim 15\%$), but halves the data rate for that spectral window. You can modify the spectral averaging factor by double-clicking on the default ‘2’ entry in the Spec. Avg. column of the spectral window table. This will bring up a list of possible spectral averaging factors. Selecting one of the values will immediately change the spectral resolution in the table. Another way to lower the data rate is to select the lowest resolution correlator mode (bold entry in the Bandwidth, Resolution column), which has an intrinsically lower data rate.

Based on the spectral windows defined, the OT will try to configure a spectral setup and display it in the spectral viewer (see Fig. 6). In order for your proposal to pass validation, all spectral windows for all source velocities must fit within a valid sideband configuration and the same ALMA Band. If several sources with different velocities were specified in Section 5, the OT will generate up to 5 separate frequency tunings based on the velocities, the width of the spectral windows, and spectral line width entered in the Expected Source Properties. The number of tunings may affect the time estimate for a Science Goal and can be checked in the Time Estimate dialogue (see Section 9).
You should **enter the rest frequencies of any spectral lines observed with your spectral setup** in the *Rest Frequencies* section below the spectral line tables. These will be stored and used for data reduction and quality assurance purposes (e.g. to provide the proper velocity scale for different image cubes, check that lines near the edges of spectral windows are fully observed). They do not affect the spectral setup. Clicking *Define rest frequencies* brings up an incarnation of the spectral line picker. Any transitions used to define spectral windows in the spectral setup are automatically stored, but we encourage users to additionally enter any other transitions they expect to detect with the proposed observations. Only transitions falling within the spectral setup as defined are permitted.

Multi-region mode

Multi-region mode allows more than one spectral window to be set up per baseband. In Cycle 5, you can specify up to 4 spectral windows per baseband, yielding a maximum total of 16 spectral windows in a single spectral setup containing 4 basebands. Simply press *Add Spectral Window Centred on a Spectral Line* or *Add Spectral Window Manually* to place extra spectral windows in the baseband tables. Because only a fixed number of channels are available for each baseband they must be divided between the spectral windows defined, implying that at a given resolution the bandwidth available for each of two spectral windows will be half that available for a single spectral window. Therefore, the fraction of the baseband assigned to each spectral window must be changed in such a way that the sum of all fractions does not exceed 1. The available choices for the correlator modes in the *Bandwidth, Resolution* field will then be automatically updated to reflect the lower number of channels available. Note that **within a baseband** all spectral windows must have the same spectral resolution (before spectral averaging).

6.2 Single Continuum

Selecting the *Single continuum* option is basically a shortcut to defining 4 continuum spectral windows maximising the available bandwidth (see Fig. 4). You are presented with a drop-down list of **standard continuum frequency setups** for each of the available ALMA Bands, chosen so as to optimise atmospheric transparency. The sky frequency of the setup can be changed to anything that still yields a valid spectral setup, but any deviation from the standard frequencies must be fully justified in Section 10.

Single Continuum and Spectral Scan observations are specified in the sky reference frame. Unlike for *Spectral Line* mode, the velocity information entered in Section 5 is ignored, and all sources are observed with the same frequency tuning.

The spectral windows set up by the OT based on the input continuum frequency for each baseband are listed in the spectral window tables and visualised in the spectral viewer. Note that the sky frequency specified corresponds to the LO frequency and is not itself observed for Bands 3, 4, 5, 6, 7 and 8.

For Bands 9 and 10, the sky frequency corresponds to the frequency at the centre of the 8 GHz wide upper sideband. **Note that Walsh switching is automatically turned on for Single Continuum observations, yielding a combined bandwidth of 16 GHz in Bands 9 and 10!**

6.3 Spectral Scans

The *Spectral Scan* interface is a convenient way of setting up several correlator tunings to cover a wide, uninterrupted frequency range within a single ALMA Band. You need to specify the start and end frequency as well as the desired *Bandwidth, Resolution* of each spectral window making up the scan. A maximum of 5 tunings can be observed within one Science Goal, which means there is a trade-off between achieving a high spectral resolution and covering a wide frequency range (if you want to cover a wider frequency range than possible with 5 tunings you will have to split the spectral scan across multiple Science Goals). Spectral averaging is possible in the same
Figure 8: Visualisation of spectral scan observations in the spectral editor pane.

The spectral scan interface may in certain cases yield a very inefficient observing strategy, causing the time estimate to skyrocket. This will happen mostly for observations with relatively long on-source times and many frequency tunings. It may be more efficient to set up such spectral scans using separate Science Goals for each frequency tuning.

If the requested spectral scan can be set up successfully, the frequency tunings calculated by the OT are displayed in the spectral visualiser (see Fig. 8) and also listed in the spectral scan table. If not, a red error message will appear, indicating the origin of the problem. In Cycle 5, spectral scan observations are offered only for Individual Pointing(s) field setups with one pointing per source and a maximum limit of 150 pointings over all tunings (i.e. for 5 tunings the maximum number of pointings is 30). **Note that for Band 9 and 10 observations Walsh switching is automatically turned on if the widest (1875 MHz) spectral windows are selected, otherwise it is turned off.**

6.4 The Representative Frequency

Every spectral setup is characterised by a representative frequency, which is used to compute the spatial parameters of the Science Goal (primary beam, synthesised beamsize, maximum recoverable scale) and controls the atmospheric transmission used in the time estimate (see Section 9). It defaults to the centre of one of the spectral windows defined, but can be changed by the user to lie anywhere within the spectral windows of the setup using the representative window radio button and/or typing in the relevant field below the baseband tables. For spectral line observations, the representative frequency is a rest frequency that will be transformed to a sky frequency using the velocity information for each source. **Please check it carefully for each source, and modify it if necessary.**
The exact choice of representative frequency can severely impact the time estimate, especially in Band 5 and the higher frequency bands 7, 8, 9 and 10. If it falls in a region of poor atmospheric transmission the time estimate will sky-rocket compared to a setup with a representative frequency in an area of good atmospheric transmission. It is important that the representative frequency is set to the line of interest that falls into the region of the poorest atmospheric transmission, otherwise the requested sensitivity will not be reached for this line.

7 Finalising the Spatial Setup

Having specified the spectral setup and in particular the representative frequency, you are now ready to finalise the spatial setup based on the sources you defined in Section 5. The maximum total number of 12-m pointings is 150, regardless of whether these are treated as mosaics, offset pointings, or separate sources. 7-m ACA pointings are counted separately.

The spatial editor
The spatial editor (see Fig. 9 and 10) is found under the Spatial tab of the Field Setup editor. It can be used to view and edit pointings on a per source basis and will work properly only if you load an image. Either Query one of the image servers selected from the drop-down menu to display a catalogue image of the area surrounding your source, or load and display your own FITS image by clicking the folder icon in the spatial editor toolbar. The primary beams of the pointings defined are represented by red circles, and can be moved, added and deleted interactively. They can be displayed for either the 12-m or the 7-m antennas if ACA observations have been requested. If Total Power observations are requested, the area scanned is shown by a turquoise box. For individual pointings, this box dynamically adapts to cover the pointings defined. You can use the buttons in the toolbar above and below the spatial viewer to perform simple visualisation operations such as adjusting the cut levels, zooming, and saving the image. Please see the spatial setup video tutorial for a practical demonstration of all functionalities.

The response of the receivers is not uniform across the antenna primary beam, but falls off towards the beam edges. The primary beam (represented by the red circles) is defined as the FWHM of the PSF. For rectangular mosaics, the falloff in sensitivity towards the beam edges is automatically taken into account by the fact that the individual pointings are set up so as to overlap. For single pointings, the source should fit within the central 1/3 of the primary beam for a more or less uniform sensitivity coverage; else a small mosaic should be set up. The inner third of the primary beam is shown by the smaller green circle in the spatial editor.

7.1 Individual Pointing(s)

You can visualise and configure the spatial setup for each source individually by selecting the relevant source tab. By default, there will be just one pointing at the source coordinates specified earlier. Offset pointings can be added, edited and deleted directly in the 'Field Center Coordinates' pane, or interactively in the spatial editor (see boxed text). The Import button will read offset pointings for a given source from an ASCII file in simple RA, DEC format. You can also Export pointings, e.g. to be used for simulations, in different coordinate formats.

Non-overlapping offset pointings are no longer allowed within one field source. Instead, all pointings within one field source must overlap and will be processed as one image.
Figure 9: Visualisation of individual pointings in the spatial tab of the Field Setup pane.

Figure 10: Visualisation of a rectangular mosaic.
If ACA 7-m observations are requested (Section 9) these will have the same pointing centres as the 12-m pointings defined; any custom-defined mosaic will not be adjusted for the larger primary beam size of the 7-m antennas. Also, the sensitivity specified in Section 9 is assumed to be per pointing and the estimate entered should take into account any overlap.

7.2 1 Rectangular Field (Mosaic)

By default, the spatial editor shows only the rectangular area defined for the mosaic. To see the individual pointings set up by the OT, you need to press the Show pointing positions button in the toolbar above the spatial editor.

The Rectangular Field option is a convenient way to easily set up evenly sampled rectangular mosaics on a per-source basis. You simply specify the size of the field as $p \times q$ lengths, the Position Angle and the Spacing of individual pointings. By default, the spacing is set to Nyquist sampling ($\text{Spacing} = 0.48113 \times \text{fraction of main beam}$). If you change this, you must carefully justify your choice in the Technical Justification (Section 10). For rectangular fields, the 7-m Array pointings are automatically set up to optimally sample the area specified, therefore the number of pointings will be smaller than for the 12-m Array. You may wish to export the coordinates of the individual pointings; this is easily done using the Export button next to the displayed number of pointings.

8 Calibration Strategy

You should normally use the default System-defined calibration option in the Calibration Setup editor. The system-defined calibration is designed to fully calibrate your science observations using the most appropriate sources available at execution time, and will at least include pointing, bandpass/flux and phase calibration. Science Goals requiring full polarisation will receive an appropriate calibration strategy. Only experts whose projects have special calibration requirements should specify User-defined calibration.

In Cycle 5 there is an extra option for the system-defined calibration strategy: force separate amplitude calibration using solar system object. By default, the OT now assumes that it is acceptable to use the same quasar from a regularly monitored sample for both amplitude and bandpass calibration. However, if you have any special amplitude calibration requirements you can force an extra observation of a Solar System object to be taken for amplitude calibration. This will add a few minutes to your time estimate (see Section 9).

9 Control and Performance

The final technical specifications of your Science Goal are entered in the Control and Performance panel (see Fig. 11). The Configuration Information section at the top of the panel displays information on the array configurations planned for Cycle 5, and uses the representative frequency defined in the spectral setup to calculate the Synthesized beamsize and the Maximum recoverable scale of the observations.

The Desired Angular Resolution (AR) and the Largest Angular Structure (LAS) are used together to determine the array configuration(s) the observations can be executed in. PIs cannot explicitly request specific configurations, but should instead make sure that the AR and LAS parameters entered are correct. The array configurations selected for your observations will together have baselines long enough to match the AR requested, and be compact enough to resolve the LAS. Often this will mean that a number of configurations are acceptable for a given Science Goal, or that up to two 12-m configurations as well as ACA 7-m and TP observations are
Figure 11: Control and Performance editor pane and the Time Estimate box. Here, a range of acceptable angular resolutions has been specified.

Users do not directly select whether ACA 7-m and/or Total Power observations should be added to their 12-m observations or not. Instead, the ACA is imposed by the OT if required to achieve the LAS requested. Whether or not ACA observations will be scheduled can be easily seen in the Time Estimate pop-up (see Fig. 11), or from the cover sheet of the pdf file created by the Tools > Generate PDF of Whole Proposal action.

The way in which the Desired Angular Resolution (AR) is entered has changed significantly compared to previous cycles. In particular, users of the 12-m array have the option of entering a single value (as in previous cycles), a range of acceptable AR values, or asking for observations with any AR. If a range of AR values is entered, the OT will assign one or more configurations that match the AR anywhere in the specified range. **This gives more flexibility for scheduling observations where the AR requirement is only loosely constrained.** Note that if an AR range is given and the sensitivity requirement is entered as a brightness temperature, the OT assumes the most unfavourable (i.e. the most extended) configuration when computing the time estimate. The equivalent brightness temperature achieved for the more compact end of the AR range is indicated for information only. The **Any** button (see Fig. 12) in practice limits the AR to the values given in the Configuration Information for the most compact and most extended 12m configuration, excluding long baseline configurations (since these are less efficient to calibrate). For this option users must enter the requested sensitivity in a permutation of Jy.
In Cycle 5, **ACA stand-alone observations** are requested explicitly by selecting *Standalone ACA* as the option for the *Desired Angular Resolution*. If necessary to achieve the LAS requested, Total Power observations will be added only for spectral line observations in Bands 3, 4, 5, 6, 7 and 8. Note that for stand-alone observations the ACA 7-m time estimate is specifically computed for the sensitivity requested, rather than being a multiple of the 12-m Array time. Given the greatly reduced total collecting area of the 10 7-m antennas compared to the 43 12-m antennas offered in Cycle 5, a stand-alone ACA proposal will by design require significantly more ACA time than a proposal including the 12-m Array for the same sensitivity request.

You can define and check technical details of the observations using the following fields (fields displayed in red must be filled):

Desired Angular Resolution: your choice is guided by the *synthesized beamsizes* corresponding to the most compact and most extended configurations available in Cycle 5 as displayed in the *Configuration Information*. The value(s) entered cannot be smaller than the synthesized beam size of the most extended configuration, and cannot be larger than twice the synthesized beam size of the most compact configuration. You can input the angular resolution in arc-seconds or a fraction of the main beam size.

Special considerations for Band 5: Since Band 5 is not expected to be available before March 2018, observations making use of configurations scheduled exclusively before that date (configurations C43-6 to C43-10, see Section 5.3.4 of the Proposer’s Guide for details) are technically unfeasible. **The OT will not warn you about this!** Therefore, please make sure that you specify an angular resolution compatible with the array schedule from March 2018 onwards.
Observations requesting very small angular resolutions (i.e. those making use of long baselines) are inefficient because they need to be heavily calibrated to correct for atmospheric phase fluctuations. Since the array configuration is determined based on the AR defined in the OT, it is possible to inadvertently trigger long baseline observations by entering an AR just slightly smaller than that actually required (e.g. B3 observations requiring a 0.34″ AR may trigger long baselines, while 0.35″ AR observations may not). You can see if the observations defined make use of long baselines in the time estimate pop-up; the first 12-m configuration will be labelled C43-7 to C43-10 and the number of phase calibrator observations per SB execution will be unusually large (above 25 or so for a ~ 1 hour long SB). Long baselines should be avoided if they are not necessary to achieve a Science Goal.

Largest Angular Structure in source (not available for *Any* selected as the desired angular resolution): here you should enter the largest angular structure that you wish to image in your source(s), which may be different from the actual size of the source. The value entered determines whether you need multiple 12-m configurations and/or the ACA, and therefore has a direct influence on the time estimate (see the *Maximum recoverable scale* for the 12-m configurations in the *Configuration Information* table for guidance). The input units are the same as for the angular resolution.

Desired Sensitivity per Pointing: you should enter the sensitivity required for the most restrictive line/continuum observation to achieve the scientific aims of the Science Goal, and if relevant mention the S/N achieved for the remaining lines/continuum in the Technical Justification. In the case of a rectangular field mosaic you should specify the sensitivity required over the mosaic, not that for individual overlapping pointings. We recommend that the sensitivity requested is good enough to give a 3 σ detection at the very least, ideally 5 σ.

Bandwidth used for Sensitivity: for continuum observations, this field is automatically set to *AggregateBandwidth*. For spectral line or spectral scan observations you can pick one of six choices given in the dropdown menu:

- *RepresentativeWindowBandWidth*: the bandwidth of the spectral window chosen as the representative spectral window (and containing the *Representative Frequency*) in Section 6
- *RepresentativeWindowResolution* (default): the (Hanning-smoothed) spectral resolution of the representative spectral window, taking into account spectral averaging
- *AggregateBandwidth*: the summed bandwidth of all your selected spectral windows
- *LargestWindowBandwidth*: the bandwidth of your widest spectral window defined
- *FinestResolution*: the finest (Hanning-smoothed) resolution of any spectral window, taking into account spectral averaging
- *User*: a bandwidth of your choice (useful if you are intending to smooth your data after observation to achieve a certain S/N)

Please pay close attention that the Bandwidth used for sensitivity is appropriate for your scientific aims. For spectral line observations we recommend that it is at most 1/3 of the expected spectral line width. Selecting too wide a bandwidth will lower the time estimate, but yield too low a sensitivity.

Science Goal Integration Time Estimate: The *Time Estimate* button will estimate the total time required to achieve the desired sensitivity goal on the 12-m Array antennas, including calibrations, multiple pointings, and overheads. In the event that two 12-m configurations are needed to provide sufficient baseline coverage, the time breakdown will be calculated for the more extended of the two, while the time required for a more compact configuration or the ACA will be calculated based on the more extended 12-m Array configuration by using a configuration-dependent multiplicative factor. Unless specified otherwise (see below), it is the total time reported here that will be used by the observatory to estimate how long your project will take to complete.
Override OT’s Sensitivity-Based Time Estimate If your Science Goal is not sensitivity driven, but instead requires a certain time (e.g., for a monitoring experiment) you can choose to override the OT’s time estimate. The time entered should be the total time (including calibrations and overheads) for the more extended 12-m configuration needed; time estimates for the ACA are the automatically calculated by the OT.

Are the Observations Time-Constrained? The OT has the ability to capture the following time constraints:

- **Single Visit**: specify fixed time intervals during which your observations should be executed. The observations will be carried out only once in total, within any of the time windows specified. You can manually Add time windows individually, or Import a list of time slots from an ASCII file. See the Control & Performance section of the ALMA OT Reference Manual for the format required.

- **Multiple Visits**: define multiple visits for your Science Goal. The timing constraints of the individual visits are specified in terms of arbitrary, fixed or relative time intervals. Here, the observations will be carried out once for each visit specified. The time estimate computed by the OT will be multiplied by the number of visits (see Fig. 13).

In addition to specific time windows and multiple visits you can also request that the 12-m and 7-m observations (in case the latter are needed to achieve the LAS requested) are executed simultaneously using a tick-box. This will automatically set the time estimate for the 7-m observations equal to that of the 12-m observations. It is allowed only if just one 12-m configuration and 7-m observations have been assigned by the OT.
Selecting *Tool* in the OT menu gives you access to a number of useful tools to help you better plan your observations. You can use the **Sensitivity Calculator** to bring up a pop-up window that allows you to experiment with project execution times and sensitivities, the **Project time summary** to give a time and data rate summary, and generate **printable and pdf summaries** of individual Science Goals as well as the whole proposal (including a cover sheet).

10 Technical Justification

For the majority of proposals, the technical justification is entered in three sections: Sensitivity, Imaging, and Correlator configuration. Relevant parameters are taken or computed from the Science Goal setup and the Expected Source Properties are displayed for each section. If the OT detects values it thinks should be double-checked, an informative message is displayed in blue. You should pay special attention to these issues in your justification text. Note that any supporting figures (e.g. simulations) should be included in the science case PDF.

You must enter a short justification text in the free-format text boxes of each section. In addition, text boxes will appear for any choices that need to be justified. These include using single polarisation, non-standard continuum frequencies, non-Nyquist spatial sampling, a user-defined calibration strategy, overriding of the OT’s suggestion of the ACA or time estimate, low maximum elevation of a source and time-constrained observations. For detailed guidelines on filling the Technical Justification please see Appendix B of the Proposer’s Guide and the technical justification video tutorial.
11 Validating and Submitting

By clicking on Menu > Validate or the corresponding tick icon in the toolbar you can check whether the project contains any setup errors (see Fig. 15). Successful validation is required before submitting a project. Warnings are for your attention and should be double-checked, but they do not prevent you from submitting a technically sound proposal. Double-clicking on an error/warning message will take you to the relevant Science Goal, so that you can easily identify and correct the problem. If all is well, the Feedback pane will report “No problems found” (Fig. 16). Your project is now ready to be submitted!

Before submitting your project, you should check whether any of your Science Goals make use of non-standard modes. Non-standard modes require manual intervention during data reduction and will be allocated up to a maximum of 20% of the available observing time. You can see which, if any, of your Science Goals use non-standard modes on the Proposal summary sheet, and in the Project Time Summary. Non-standard modes will also trigger a validation warning, and include VLBI proposals, Solar observations, long baselines in Bands 7 and above, full polarisation observations and high frequency observations (Bands 8, 9, and 10), among other things (see Section 5.2 of the Proposer’s Guide for a complete list). Since it is expected that observing time for these modes will be more competitive than for standard observations you should ensure that you did not inadvertently trigger a non-standard mode.
To submit your project to the ALMA archive, select *File > Submit Project* in the menu bar. You and all of your Co-Is should receive a confirmation e-mail after each proposal submission. Once you have submitted, the *Unsubmitted Proposal* label in the blue proposal status bar will be replaced by a red Submitted label. This indicates that the proposal has been stored in the ALMA archive and assigned the *Project Code* listed in the top-level overview panel of your proposal. You are encouraged to save your project to disk after submission in order to ensure that any updates are made on the submitted version.

You can make changes and re-submit your *Submitted* proposal until the deadline; any re-submission will overwrite the previous version of the proposal stored in the archive. For more detailed information on the ALMA OT and the technical capabilities in Cycle 5 you are invited to consult the documentation available on the Science Portal. If you have any questions or comments please feel free to submit a ticket to the ALMA Helpdesk, also accessible from the Science Portal.
The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organization for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.